
Migrating stateful monoliths to Micro Frontends
1st submission

Auke van Oostenbrugge - D23124832
TU059 - MSc in Software Engineering - Technological University Dublin

2nd of September, 2024

If we would define software as a composition of functionality expressed by code, architecture would be nothing
more than a way for developers to explain and motivate the composition, interactions and hierarchy of these

functionalities. (Sim, 2005)

1 Background, Context and Scope

The evolvability of architecture is essential to an appli-
cation’s survivability. The inability to effectively and
reliable evolve your product means loss of business
opportunities and potential stagnation of innovation
(Hunyu Pei Breivold, 2012). Unfortunately, in most
business cases, it is not feasible to just start a new
project from scratch. This leads researchers to come
up with strategies to improve the evolvability of ex-
isting codebases.

Historically, the main focus in the evolution of ar-
chitectures was the level of dependency (coupling) in
the code (Cătălin STRÎMBEI, 2015; Thomas Zim-
mermann, 2003). When architecture is mentioned in
research, there is recurring theme expressed as: Archi-
tecture is only important for substantial codebases to
justify the extra complexity it brings, where ‘substan-
tial’ is measured in the amount of developers involved
and codebase size (Sim, 2005; Thomas Zimmermann,
2003; Davide Taibi, 2020; Zateishchikov, 2023).

Following this trend, the newest development is
decoupling the frontend into isolated components ad-
dressed as Micro Frontends (MFE). Research started
around 2019 to further decouple frontend compo-
nents after the evolution that changed stateful ‘tra-
ditional’ monoliths to stateless frontend/backends
(Caifang Yang, 2019). By that time tooling was not
readily available, which has changed completely over
the last couple of years1.

It is worth mentioning that a migration to MFE
is not a ’silver bullet’ solution (Mezzzalira, 2021).
Smaller products might not gain any of the benefits
of a decentralized codebase since the codebase (or
team) itself is already small (Severi Peltonen, 2020).
Therefore growing companies might initially neglect
this architecture until the necessity occurs, but when
it occurs, it might not feasible anymore for the com-

pany to migrate ’big bang’. This paper is dedicated
to the reseach question of how a stateful monolith
(Like Java Wicket, PHP etc.) can gradually migrate
their frontend to a scalable decentralized architecture
like MFE.

2 Problem Description

Considering the rapid growth of technology and user
demands of new features, developers struggle to keep
their growing codebases clear and understandable
(Yosep Novento Nugroho, 2022). While companies
start with monoliths (Cătălin STRÎMBEI, 2015) there
are no ways to really decrease the codebase size except
for removing code and thus functionality or abstract-
ing away to libraries thus horizontally scaling the code
(Biggerstaff, 1994). While other factors like the expe-
rience level of the maintainers and the quality of the
codebase render it difficult to measure the correlated
complexity, or even specify the connected implications
of a complex codebase, research suggests that there
is a strong correlation between code coupling and
understandability for developers (Alenezi, 2016). A
major downside of a monolithic application during
runtime is the lack of flexibility and resilience. To
be able to deploy new changes, the whole codebase
requires to be redeployed and if something goes wrong,
it could potentially result in downtime for the entire
application (Cătălin STRÎMBEI, 2015). Furthermore,
homogeneity in a monolithic approach limits the use
of technologies or tools to the initially chosen language.
If for some reason the support of the chosen language
stops or the choice is made to use a different language,
the team is forced to rewrite the whole codebase. This
limits innovation preventing the usage of new tools
(Severi Peltonen, 2020). Extensive research has been
performed on microservices to mitigate these draw-

1Bit.dev, LitElement, Webpack5, single-spa etc.

Auke van Oostenbrugge - D23124832 1

026154
Rectangle



backs (Grzegorz Blinowski, 2022) . The fragmented
nature of small subservices allow for easy migration
and isolated testing of new tools/frameworks without
affecting the other services. To be able to decouple
the frontend the same way as microservices did for
the backend, some differences and extra complications
should be take into account (Rodrigo Perlin, 2023).

2.1 Approaches to solve the problem

The evolution of MFE started with html fragments
and a way to aggregate microservices using a Gate-
way API2 or Backend for Frontend (BFF)3 design
patterns on server level as described by Harms et al.
(Holger Harms, 2017). Tilak et al. (P Yedhu Tilak,
2020) stated that after the wave of micro-services, the
next bottleneck in line were the monolithic frontends.
Ferracaku (Ferracaku, 2021) presented in his Msc.
thesis around 2021 the state of micro frontends ac-
companied by a small experiment on how developers
perceive the new paradigm. The results suggested
that even though tooling was in a primitive state, the
technique sounded promising for large projects. The
results of the experiment also implied that the best
way to implement MFE is to migrate from an existing
Singe Page Application (SPA).

In an attempt to standardize MFE, some books
(Geers, 2020; Rappl, 2021; Mezzzalira, 2021) have
been written that define which options are available
to setup a micro frontend environment: The first
choice to make is whether to go for a horizontal or
vertical split as can be seen in Fig 1.

Horizontal split means composing the webpage by
injecting grouped functionality as an isolated (micro)
frontend in a ’shell’ application while vertical means
creating a component per ‘route’ and thus injecting
a (micro) frontend based on the URL. The next step
is to choose where to compose the MFE. Peltonen
et al (Severi Peltonen, 2020) presented the different
ways to create MFE, mainly the difference between
client-side, server-side and edge-side composition (Fig.
2). Another product of their research was a list of
motivations, benefits and issues regarding MFE in
general. Finally, Petcu et al. (Adrian Petcu, 2023)
highlighted the difference between a horizontal split
architecture and vertical split architecture, compli-
mented by a small performance analysis between a
monolith, module federation and IFrames solution. It
is important to note that the application used in this
benchmark was very simple and small.

Figure 1: Horizontal vs Vertical splitting

Therefore the test fails to emphasize the potential
benefits of MFE when used in bigger applications.
Kaushak et al. (Neha Kaushik, 2024) performed the
experiment again using a bigger application. the
results suggest a slight improvement of performance
on heavy usage although it is still hard to compare
the 2 setups without seeing the codebases.

While research advices to start using micro frontends
whenever the codebase is of considerable size4 or
whenever multiple teams work on the same code-
base to see the real benefits (Adrian Petcu, 2023; Za-
teishchikov, 2023; Severi Peltonen, 2020), Männistö et
al. (Jouni Männistö, 2023) suggested that potential
benefits could already be achieved on smaller code-
bases. A small custom framework was developed
leveraging the library LitElement5 to load isolated
web components in the shell application based on
which tenant was signed in. Perlin et al (Rodrigo Per-
lin, 2023) showed a way to load different frontend
frameworks like React, Angular and Vue into a sin-
gle shell application using Webpack6. Zateischchikov
developed a guide on how to rewrite your SPA to a
MFE which also leveraged Webpack. Most of these
solutions could be defined as “client-side composition”
with the exception of Männistö since it is not clear
what technique is used for the shell, the use of module
federation however, suggests client-side composition.

2https://microservices.io/patterns/apigateway.html
3https://bff-patterns.com/
4The term “considerable size” is left unquantified on purpose because no research has been able to reliably define and quantify
big codebases, rendering the term subjective.

5https://lit.dev/
6https://webpack.js.org/concepts/module-federation/

Auke van Oostenbrugge - D23124832 2



The benefits of modularization have not yet been
reliably proven in current MFE research. However
Martini et al presented a way to quantify the benefits
of modularization which could benefit the sustainabil-
ity of a codebase. (Antonio Martini, 2016, 2018) A
nuance to be addressed is that modularity can be
achieved within monolithic applications. The MFE
architecture however, enforces modularity by break-
ing the code up into multiple sub-applications which
reduces the possibility of coupling dramatically.

Figure 2: Composition types

Kaushik et al. (Neha Kaushik, 2024) used machine
learning to measure the response time and throughput
in an attempt to quantify the resource benefits of MFE.
This is hard to proof considering that a drawback of
MFE is potential increased code duplication result-
ing in an increase of resource usage (Zateishchikov,
2023). To mitigate these drawbacks, load-time opti-
mization can be achieved by premature composition
of the web components at CDN or server-side level
(Severi Peltonen, 2020). Combined with caching this
can significantly improve the load times. This op-
timization can be taken a step further by applying
Server Side Rendering (SSR) to pre-render MFE on
the server. Borello (Borello, 2024) dedicated his thesis
to researching the use of SSR in combination with Re-
act server components7 which could allow component-
level SSR. However this technique was not mature
enough to be used in a corporate environment, which
is why he neglected the technique in his experiment.
For server-side composition, it is worth mentioning
that in early research around 2021, an old technology
called Server-side includes (SSI) is mentioned as a
way to compose micro frontends at server level while
never used in later research. Perhaps because this
technique is unfortunately not without security risks.
SSI could potentially be exploited by malicious users,
which should be taken into account in further research
(Muhammad Zulkhairi Zakaria, 2021).

2.2 Gaps in Research

Since current research is focussed on migrating
from a stateless SPA frontend monolith to stateless
MFE (Jouni Männistö, 2023; Rodrigo Perlin, 2023;
Adrian Petcu, 2023). This paper aims to close the gap
on migrating from a stateful monolithic architecture
to a stateless MFE architecture.

What sets this research apart is the focus on server-
side composition, SSR and Isomorphic components.
SSR and Static Site Generation (SSG) are men-
tioned in research but hardly used in the experiments
(Andrej Simeunovic, 2023; Tokuc, 2023; Borello, 2024;
Zateishchikov, 2023). The given motivation was ‘lack
of time and available resources’. This renders the topic
valuable for further research since SSR could poten-
tial be very beneficial for monoliths that are SSR like
PHP, Ruby or Java Wicket (Taufan Fadhilah Iskan-
dar & Lubis, 2020). Recent developments within the
field of MFE like React server components, Angular’s
focus on improving SSR (Introducing Angular v17 ,
2023). new task automation updates from Nx8 and
the inclusion of module federation in Vite9 allow for
micro frontend setups that include hydrated10 SSR
frontends which could proof useful for this particular
use-case.

3 Research Question

RQ1: Is it possible to integrate SSR Micro
Frontends in a stateful Monolithic application?

RQ2: Are there any performance benefits of using
SSR Micro Frontends over the baseline CSR Micro
Frontends in stateful Monolithic applications.

3.1 Goal

The goal of this research paper is to explore the poten-
tial benefits of SSR in Micro Frontends. In previous
research, the main focus was put on migrating Single
Page Applications to Micro Frontends but currently
no research backs the edge case of having a stateful
monolith. To find the optimal setup for this usecase,
the server-side composition setup will be benchmarked
against the common practice setup (client-side com-
position).

3.2 Null Hypothesis

Micro Frontends is a technique used gradually after
migrating your stateful monolithic application to a
stateless backend, preferably with micro services, and

7https://react.dev/reference/rsc/server-components
8https://nx.dev/concepts/inferred-tasks
9https://github.com/originjs/vite-plugin-federationc

10https://angular.io/guide/hydration

Auke van Oostenbrugge - D23124832 3



a separate frontend. A migration to Micro Frontends
requires some sort of JavaScript shell application that
manages injection and cohesion.

3.3 Alternative Hypothesis

When migrating a Java Wicket monolith to Angular
micro frontends, if micro frontends are injected di-
rectly in a stateful monolith shell using server-side
composition then the removal of a JavaScript shell ap-
plication combined with prerendered components will
improve the overall performance of the application.

4 Design and Implementation

The setup will consist of a stateful SSR monolith
(Java Wicket) as baseline application referred to as the
’shell’, to maintain consistency with current research
and the community the tractor-store11 was chosen as
example. And a Monorepo MFE setup referred to
as the ’Framework’ that supports building, packag-
ing and deploying (Angular) Micro Frontends to be
integrated in the baseline application. The project
setup will use the MFE Decision Framework invented
by Mezzalira to discover which path is most feasi-
ble for this particular Use Case (Mezzzalira, 2021).
Although the chosen techniques (Java Wicket and
Angular) are predetermined, the choice of technology
is rather trivial. The focus will be on the techniques
and the overal use-case of integrating (SSR) MFE in
a stateful Monolith.

In the research phase, frameworks like bit.dev,
simple-spa, Lerna, openComponents, Piral, Qwik, Nx
and similar Monorepo frameworks are to be explored.
An important design principle for MFE is uniformity
to create a smooth developer experience (Davide Taibi,
2020). Monorepos are proven to benefit fragmented
multi-application setups like Google because code and
dependencies from (internal) libraries is easier to find
and manage (Ciera Jaspan, 2018). Vite and Webpack
will be used in the benchmark to research the benefits
of sharing common modules and the use of module
federation, a technique to load JavaScript modules
from external sources.

The components will have to be able to commu-
nicate to the ‘shell’ (baseline app) and each other.
Therefore a reliable way of communication has to be
researched, there are a couple of ways of establishing
this using the ’shell’ application (Mezzzalira, 2021).
However a constraint of the current scope is to mini-
malize coupling on the shell application which is why
a custom solution should be explored.

To be able to deploy Micro Frontends in a non-
javascript ’shell’, A method or technique should be
researched that takes care of the integration of the
MFE. Web components provide a technology agnostic
way of loading JS applications in a web application.
Furthermore it is possible to write a minimalistic JS
wrapper that uses Module Federation to fetch and
integrate the Micro Frontends. Finally, a brand new
open source project called Picard.js12 will be explored
to load MFE in the baseline application. All men-
tioned tools will be compared to find the best setup
for this particular use-case. Current research is invest-
ing in standardizing Frontend Discovery which will
also be included in the integration part13.

Additional research will have to be performed on
combining SSR with Web components. The combi-
nation of isomorphic Web components, (JavaScript
components that can be rendered server-side as
well as client-size), started off a bit unstable
(Lorenz, 2020). Development on Isomorphic rendering
(Karolina Kowalczyk, 2024) and SSR with Hydration
has improved over the years with for example Angu-
lar 17. The choice to include the use of isomorphic
rendering is to figure out if micro frontends can be
created initially as SSR, but migrated to CSR in a
later stadium, allowing for more freedom in future
development. Once the components are rendered on
the server, the viability of server-side composition
in combination with these SSR components will be
researched because of concerns of scalability on server-
side composition setups (Severi Peltonen, 2020).

Another potential concern of this particular experi-
ment is the combination of stateless MFE in a stateful
shell. A solution has to be discovered to transfer the
stateful context to a MFE that has no access to the
state. A common solution is to write an isolated Mi-
cro Service complementing the MFE. Writing Micro
Services however exceeds the scope of this experiment.
Therefore in this setup a small wrapper acting as a
BFF will suffice to handle REST requests from the
MFE.

Once the framework is developed, the framework
will be benchmarked against a “client-side compo-
sition” setup. Since components or rather sections
from the baseline architecture will be extracted using
Domain Driven Design (DDD) (Evans, 2004) in the
future, a mock functionality will be developed in both
setups. The main idea of DDD is to draw boundaries
around aggregated components that contain similar
business-functionality. That means domains like for
example ‘account management’ can potentially be
transformed to micro frontends, isolating function-
ality based on ‘similarity’. The same technique has

11https://micro-frontends.org/tractor-store/
12https://picard.js.org/
13https://github.com/awslabs/frontend-discovery

Auke van Oostenbrugge - D23124832 4



been used a lot over the last couple of years to grad-
ually migrate monolithic backends to micro services
(Victor Velepucha, 2023).

Finally, a uniform simple plug-and-play method-
ology to inject these SSR micro-frontends will be
researched with as product the ’Framework’ setup.
The conditions are; minimal change in the host ap-
plication and minimal interference with the current
baseline application. The implementation should feel
seamless and should be easy to use for developers of
similar use-cases. MFE are proven to increase com-
plexity during implementation (Ferracaku, 2021). A
poor developer experience will create resistance and
thus lack of support as suggested by the results of
(Fabio Antunes, 2024) rendering the benefits of MFE
practically useless. Although the specifics have yet
to be explored, the implementation will consist of a
Java Wicket wrapper component that is able to load a
micro frontend in the monolith. The MFE, provided
by a Node server or CDN, require an uniform way of
being initialized and injected. This is possible using a
settings JSON file (Rappl, 2021) through html prop-
erties in the component (Mezzzalira, 2021) or a novel
implementation like using JavaScript signals14.

5 Evaluation

Due to the significant differences in the paradigms SSR
and CSR, server, network and browser load should
be taken into account. It is important to note that
Hydration and Isomorphic components could blur the
lines between what is considered CSR and SSR, hence
these techniques will be incorporated in the server-
side composition setup. The main idea is to fill the
gaps of creating a setup that renders and composes
the micro frontends on the server which has not been
done before (Karolina Kowalczyk, 2024).

The addition of rendering components on the server-
side does mean that additional computation will be
moved to the server instead of the browser. Therefore
it is unfair to only measure the load on the browser.
After creation of the BFF micro-service, a monitoring
tool like Grafana will be used to visualize the differ-
ence in load on the server to accommodate for the
server-side part of the benchmark.

The browser part will be measured browser tools
like lighthouse and Core Web Vitals in order to quan-
tify the user experience (Roy Hanafi, 2024). By lever-
aging predefined metrics like Largest Contentful Paint
(LCP) and First Contentful Paint (FCP), the differ-
ences in the rendering techniques could be compared
and bechmarked.

The alternative hypothesis is accepted if the
JavaScript bundle size is decreased or if the average

FCP/LCP metric improved using a threshold of 10%.
Server CPU and RAM differences will be presented in
the benchmark and comparison to highlight the bene-
fits of both paradigms. Because of time limitations, it
is impossible to test the performance differences in a
big application, therefore the threshold was intention-
ally lowered to accomodate for the resource overhead
that MFE produce.

6 Activities

The outline of this experiment will consist of 4 phases:
Research, Development, Benchmarking and Evalua-
tion. Fig 3. Shows these phases including the sub-
products to be delivered at the end per phase. The
document will be outlined and initialized in the first
week and maintained during the process.

In the final weeks during the conclusions, the doc-
ument will be revised. The expected products to be
delivered are a framework that shows how to migrate
a trivial SSR Monolith to Micro Frontends (using
Angular) with a complementary benchmark provid-
ing detailed insight in if and when this method is
beneficial.

References

Adrian Petcu, D. A. S., Madalin Frunzete. (2023).
Benefits, challenges, and performance analysis
of a scalable web architecture based on micro-
frontends. In U.p.b. sci. bull., series c, vol. 85,
iss. 3 (pp. 319–334). University Politehnica of
Bucharest.

Alenezi, M. (2016). Software architecture quality
measurement stability and understandability.
In International journal of advanced computer
science and applications, vol. 7, 2016 (pp. 550–
560). thesai.org.

Andrej Simeunovic, U. T. (2023). Managing micro
frontends across multiple tech stacks - sharing,
finding & publishing (Unpublished master’s the-
sis). PLTH — LUND UNIVERSITY.

Antonio Martini, N. M., Erik Sikander. (2016). Es-
timating and quantifying the benefits of refac-
toring to improve a component modularity: A
case study. In 42th euromicro conference on
software engineering and advanced applications
(pp. 92–100). IEEE.

Antonio Martini, N. M., Erik Sikander. (2018, Jan-
uary). Software architectures – present and
visions. In Information and software technology
vol. 93 (pp. 264–279). Elzevier.

Biggerstaff, T. J. (1994). The library scaling problem
and the limits of concrete component reuse. In

14https://github.com/tc39/proposal-signals

Auke van Oostenbrugge - D23124832 5



Proceedings of 1994 3rd international conference
on software reuse (pp. 102–109). IEEE.

Borello, D. (2024). Micro frontends, server compo-
nents and how these technologies can provide
a paradigm shift with architectural changes in
modern enterprise web app development (Un-
published master’s thesis). POLITECNICO DI
TORINO.

Caifang Yang, Z. S., Chuanchang Liu. (2019). Re-
search and application of micro frontends. In
Iop conference series: Materials science and
engineering vol. 490, iss. 6 (pp. 1–6). IOP.

Ciera Jaspan, A. K. C. S. E. K. S. C. W. E. M.-
H., Matthew Jorde. (2018). Advantages and
disadvantages of a monolithic repository. In
40th international conference on software engi-
neering: Software engineering in practice (pp.
255–265). ACM/IEEE.

Cătălin STRÎMBEI, R.-M. S. A. N., Octa-
vian DOSPINESCU. (2015, April). Software
architectures – present and visions. In Informat-
ica economică vol. 19, no. 4/2015 (pp. 13–27).
AL.I.Cuza University.

Davide Taibi, L. M. (2020, April). Micro-frontends:
Principles, implementations, and pitfalls. In
Acm sigsoft software engineering notes, volume
47, issue 4 (pp. 25–29). ACM.

Evans, E. (2004). Domain-driven design: Tackling
complexity in the heart of software. Addison-
Wesley Professional.

Fabio Antunes, M. A. P. A. D. T. M. K., Maria Julia
Dias Lima. (2024). Investigating benefits and
limitations of migrating to a micro-frontends
architecture. https://arxiv.org/ .

Ferracaku, J. (2021). Sthe state of micro fron-
tends: Challenges of applying and adopting
client-side microservices (Unpublished master’s
thesis). University of Oulu.

Geers, M. (2020). Micro frontends in action. Man-
ning.

Grzegorz Blinowski, A. P., Anna Ojdowska. (2022,
February). Monolithic vs. microservice architec-
ture: A performance and scalability evaluation.
In Ieee access, vol. 10 (pp. 20357–20374). IEEE.

Holger Harms, L. L. I., Collin Rogowski. (2017).
Guidelines for adopting frontend architectures
and patterns in microservices-based systems. In
11th joint meeting on foundations of software
engineering (pp. 902–907). ACM.

Hunyu Pei Breivold, M. L., Ivica Crnkovic. (2012,
January). A systematic review of software archi-
tecture evolution research. In Information and
software technology, vol. 54, 2012 (pp. 16–40).
Elsevier.

Introducing angular v17. (2023).
https://blog.angular.dev/

introducing-angular-v17-4d7033312e4b.
(Accessed: 2024-05-12)

Jouni Männistö, M. R., Antti-Pekka Tuovinen. (2023).
Experiences on a frameworkless micro-frontend
architecture in a small organization. In Ieee
20th international conference on software archi-
tecture companion (pp. 61–67). IEEE.

Karolina Kowalczyk, T. S. (2024, January). En-
hancing seo in single-page web applications in
contrast with multi-page applications. In Ieee
access vol. 12 (pp. 11597–11614). IEEE.

Lorenz, D. (2020). A deep analysis into isomorphic,
autonomous cross-framework usage microfron-
tends. https://itnext.io/a-deep-analysis-
into-isomorphic-autonomous-cross-framework-

usage microfrontends-364271dc5fa9. (Ac-
cessed: 2024-05-12)

Mezzzalira, L. (2021). Building micro-frontends: Scal-
ing teams and projects, empowering developers.
O’Reilly UK Ltd Clockhouse Dogflud Way Farn-
ham, GU9 7UD: O’Reilly.

Muhammad Zulkhairi Zakaria, R. K. (2021). Risk
assessment of web application penetration test-
ing on cross-site request forgery (csrf) attacks
and server-side includes (ssi) injections. In In-
ternational conference on data science and its
applications (icodsa) (pp. 79–85). IEEE.

Neha Kaushik, V. R., Harish Kumar. (2024, April).
Micro frontend based performance improvement
and prediction for microservices using machine
learning. In Journal of grid computing, vol. 22,
art. 44 (pp. 1–26). Springer.

P Yedhu Tilak, S. D. D. N. B., Vaibhav Yadav. (2020).
A platform for enhancing application devel-
oper productivity using microservices and micro-
frontends. In Ieee-hydcon (pp. 1–4). IEEE.

Rappl, F. (2021). The art of micro frontends. Packt.
Rodrigo Perlin, V. M. G. D. A. M., Denilson Ebling.

(2023). An approach to follow microservices
principles in frontend. In Ieee 17th interna-
tional conference on application of information
and communication technologies (aict) (pp. 1–6).
IEEE.

Roy Hanafi, N. A., Abd Haq. (2024, January). Com-
parison of web page rendering methods based
on next.js framework using page loading time
test. In Vol. 13 no. 1 (2024): Maret 2024 (pp.
102–108). Teknika.

Severi Peltonen, D. T., Luca Mezzalira. (2020, Au-
gust). Motivations, benefits, and issues for
adopting micro-frontends: A multivocal litera-
ture review. In Information and software tech-
nology, vol. 136 (pp. 1–19). Elsevier.

Sim, S. E. (2005). A small social history of software
architecture. In 13th international workshop on
program comprehension (pp. 341–344). IEEE.

Auke van Oostenbrugge - D23124832 6



Taufan Fadhilah Iskandar, T. F. K., Muharman Lubis,
& Lubis, A. R. (2020). Comparison between
client-side and server-side rendering in the web
development. In Iop conference series: Materi-
als science and engineering vol. 801 (pp. 1–7).
IOP.

Thomas Zimmermann, A. Z., Stephan Diehl. (2003).
How history justifies system architecture (or
not). In Sixth international workshop on prin-
ciples of software evolution (pp. 73–83). IEEE.

Tokuc, K. (2023). Suitability of micro-frontends for an
ai as a service platform (Unpublished master’s
thesis). University of Applied Science Hamburg.

Victor Velepucha, P. F. (2023, July). A survey on
microservices architecture: Principles, patterns

and migration challenges. In Ieee access vol. 11
(pp. 88339–88358). IEEE.

Yosep Novento Nugroho, M. J. A., Dana
Sulistyo Kusumo. (2022). Clean architecture
implementation impacts on maintainability
aspect for backend system code base. In
10th international conference on information
and communication technology (icoict) (pp.
134–140). IEEE.

Zateishchikov, K. (2023). Scaling a software
platform using micro frontends (Unpublished
master’s thesis). VAASAN AMMATTIKO-
RKEAKOULU UNIVERSITY OF APPLIED
SCIENCES.

Figure 3: Gantt chart

Auke van Oostenbrugge - D23124832 7


