
#PythonMonday

Page 50

 What are Functions and Methods?

 Functions and Methods

Imagine if we had a large Python program that has several sections
of the code repeated throughout the program. It would be good if
there was some way we could wrap up the frequently used
commands into a single package, and instead of having to rewrite
the same code over and over again, we could just call the package
name instead. In Python we usually call these packages functions.

Functions are normally designed to accomplish a single, specific
task, for example, check if a number is odd or even. In this case the
function would be called with its package name and the number
to be checked, and the function would return back to the main
program whether the number is odd or even (as a Boolean).

Functions are sometimes called Methods, but only if they are
defined as part of a larger structure called a Class. We won’t be
learning about classes in detail for the moment, but it is worth
mentioning that classes are part of an approach to programming
called Object-Oriented design, which focuses on defining the main
functions of a program as general structures called objects.

The first thing we need to do is decide on a name for the function, use the def
command with that name. Following the name are a pair of parenthesis (which may
or may not include the names of values (parameters) that need to be included in
the function). Next the full set of commands that are part of the function are
included (and they are indented), followed by an optional return command,

which lets the function pass a value back to the main program. We normally finish
the function with a commented END command.

FUNCTION Format

 def FunctionName(InputParamters):
 do some stuff;
 return ReturnValue

 # END FunctionName.

Functions are great because they allow us to reduce the amount of code in a
program, and also allow us to focus on what the overall program is doing instead of
concentrating on how the overall program is doing it (this is called abstraction).

 #PythonMonday © Damian Gordon

