
#PythonMonday

Page 61

 Eras of Software Testing

Eras of Software Testing
Software testing has evolved and improved over the past 75 years, and has seen
many changes as a result of changes in technologies, processes and perspectives on
testing. Presented below is a table outlining some of the key eras of testing based on
David Gelperin and Bill Hetzel’s paper "The Growth of Software Testing" published in
1988. I’ve added in the last three eras myself, based on various textbooks.

Era Description

1945-1956
Debugging-
Oriented

This was at the start of the history of programming, and is
sometimes called the “Code-and-Fix” era, where there was no
testing process, programmers fixed code as they found errors.

1957-1978
Demonstration-

Oriented

This was the first time there was a clear distinction between
testing and debugging; and the testing focussed on ensuring
that the program was doing everything it was supposed to do.

1979-1982
Destruction-
Oriented

During this era, the goal was to see what inputs would cause
the programs to fail, for example. if we put a text value in a
numerical field, or we put in a date of birth after today’s date.

1983-1987
Evaluation-
Oriented

This era focused on testing as part of a larger quality
assurance process; where it was acknowledged that large
software systems would inevitably have some bugs in them,
but to minimise the number of bugs to a specified rate.

1988-2000
Prevention-
Oriented

In this era, testers were expected to have a very good
understanding of the systems that they were testing, and to
know which parts of the code would be more difficult to test.

2001-2003
Methodology-

Oriented

Testing gained a new prominence and importance in this era
with the advent of software development methodologies that
put testing at their core, including Test-Driven Development.

2004-2013
Automation-
Oriented

In this era, large software testing tools were developed to help
the testers do their job by eliminating some of the repetitive
tasks, as well as creating large sets of input data, and inputting
that data, and checking that the outputs are as expected.

2014-To Date
Intelligence-
Oriented

Finally, we are now in an era where the testing tools are
augmented by artificial intelligence that can help the tester
figure out what tests are best for each part of the software.

Note: These dates are all approximate, and, in reality, these eras don’t fit into tidy
little boxes, so in practice the eras overlapped significantly, but for the sake of
understanding the key evolutions in software testing, this is a really good model.

 #PythonMonday © Damian Gordon

